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Evaluation of Genetic Variation Contributing
to Differences in Gene Expression between Populations

Wei Zhang,1,5 Shiwei Duan,1,5 Emily O. Kistner,2 Wasim K. Bleibel,1 R. Stephanie Huang,1

Tyson A. Clark,4 Tina X. Chen,4 Anthony C. Schweitzer,4 John E. Blume,4 Nancy J. Cox,1,3

and M. Eileen Dolan1,*

Gene expression is a complex quantitative trait partially regulated by genetic variation in DNA sequence. Population differences in gene

expression could contribute to some of the observed differences in susceptibility to common diseases and response to drug treatments.

We characterized gene expression in the full set of HapMap lymphoblastoid cell lines derived from individuals of European and African

ancestry for 9156 transcript clusters (gene-level) evaluated with the Affymetrix GeneChip Human Exon 1.0 ST Array. Gene expression

was found to differ significantly between these samples for 383 transcript clusters. Biological processes including ribosome biogenesis

and antimicrobial humoral response were found to be enriched in these differential genes, suggesting their possible roles in contributing

to the population differences at a higher level than that of mRNA expression and in response to environmental information. Genome-

wide association studies for local or distant genetic variants that correlate with the differentially expressed genes enabled identification

of significant associations with one or more single-nucleotide polymorphisms (SNPs), consistent with the hypothesis that genetic factors

and not simply population identity or other characteristics (age of cell lines, length of culture, etc.) contribute to differences in gene

expression in these samples. Our results provide a comprehensive view of the genes differentially expressed between populations and

the enriched biological processes involved in these genes. We also provide an evaluation of the contributions of genetic variation

and nongenetic factors to the population differences in gene expression.
Introduction

The genetic basis for population differences in clinical

outcome and risk of disease is not fully understood.1–5

Although contributors to the differences are likely to

include socioeconomic and/or environmental factors,

genetic variation affecting gene-expression levels is likely

to play an important role. Previous studies have shown

that gene expression is a complex quantitative phenotype

with variability among individuals as well as among cell

types.6–8 The International HapMap resource,9,10 which in-

cludes information on millions of single-nucleotide poly-

morphisms (SNPs) genotyped in lymphoblastoid cell lines

(LCLs) for the individuals included in HapMap, and the

availability of these LCLs enable whole genome expression

studies and characterization of the genetic contribution of

the SNPs to the variation in gene expression observed be-

tween individuals.11 Common genetic variants accounting

for interindividual differences in gene expression have

been reported with the use of a panel of LCLs, derived

from individuals of European ancestry from Utah, USA, col-

lected by Centre d’Etude du Polymorphisme Humain

(CEPH).8,12–14

However, population differences in gene expression

have only recently begun to be investigated. Spielman

et al. utilized a subset of human genes (~4,200 expressed

in LCLs and queried by the Affymetrix HG-Focus array),

with samples derived from unrelated CEPH individuals

from Utah, USA (CEU) and from Han Chinese individuals
in Beijing and Japanese individuals in Tokyo (CHB/JPT), to

demonstrate that cis-acting regulators may account for

some of the population differences in gene expression,15

although Akey et al. suggested that batch effects could be

a confounding factor when interpreting their results.16

Using the same microarray platform, Storey et al. showed

that 17% of genes are differentially expressed between

CEU individuals and Yoruba individuals from Ibadan,

Nigeria (YRI) in a set of 16 unrelated samples.17 To compre-

hensively investigate the pattern of population differences

in gene expression, we utilized the Affymetrix GeneChip

Human Exon 1.0 ST Array (exon array), which contains

~20,000 known human genes (~1.4 million annotated

and predicted exons corresponding to 17,879 transcript

clusters with the core set of exons used), to study a set of

HapMap samples consisting of 30 CEU and 30 YRI par-

ents-offspring trios. Our goals were to determine gene-

expression differences between these two populations, to

identify what biological processes or pathways are en-

riched in the differentially expressed genes, and to evaluate

the contribution of local and distant genetic variation to

population differences in gene expression. Because of the

fact that the Epstein-Barr virus (EBV)-transformation of

LCLs from the CEU and the YRI samples occurred more

than 20 years apart,10,18 certain nongenetic factors, such

as the EBV strains used for transformation or the number

of freeze/thaw cycles, could lead to differences in gene

expression between these two populations. Therefore, we

further evaluated a residual model that tested the
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contribution of genetic variation to gene-expression differ-

ences relative to other nongenetic factors.

Material and Methods

Cell Lines
HapMap9,10 cell lines (30 CEU trios and 30 YRI trios) were pur-

chased from the Coriell Institute for Medical Research (Camden,

NJ). The order in which the cell lines were processed was balanced

with respect to population in an effort to minimize variation in

growth conditions between populations (a potentially confound-

ing factor). On the same day that ten YRI-population cell lines

were received as live cultures from Coriell, a set of ten CEU lines

were thawed at our facility; both sets were centrifuged at

400 3 g to remove media. Five milliliters of lymphoblastoid cell

medium (LCL medium) consisting of RPMI 1640 (Mediatech) sup-

plemented with 1% l-glutamine (Mediatech) and 20% FBS (Hy-

Clone Laboratories, Lot # AQF24010) was added for the initial pas-

sage and then cells were passaged every 48 hr with LCL medium

and 15% FBS. Cell suspensions were transferred to 25 cm2 flasks

and incubated at 37�C in a 90% humidified, 5% CO2 atmosphere.

Both sets of YRI and CEU lines were maintained for three passages

at a concentration of 3.5–4.0 3 105 cells/mL and, if viability was

R85%, harvested after the fourth dilution from exponentially

growing cells. Cell suspensions were spun at 400 3 g for 5 min

to remove media. Cell pellets were washed twice with ice-cold

PBS (Invitrogen) and stored at �80�C. Two CEU samples

(GM10855 and GM12236) were not available from Coriell at the

time of the study. The viability of two lines (GM12716,

GM18871) was below 85% at the sample-collection time and

therefore excluded from further analysis. A total of 176 cell lines

(87 CEU samples and 89 YRI samples) were included in this study.

RNA Isolation
Cell pellets were thawed and total RNA was extracted with

QIAGEN Qiashredder and RNeasy plus kits (QIAGEN) according

to the manufacturer’s protocol. RNA concentration and purity

was determined through measurement of A260/A280 ratios with

the Spectronic Genesys 6 UV/Vis Spectrophotometer (Thermo

Electron). Confirmation of RNA quality was assessed by use of

the Agilent 2100 Bioanalyzer (Agilent Technologies). All 176

RNA samples had high quality and showed no signs of DNA con-

tamination or RNA degradation. RNA samples were immediately

frozen and stored at �80�C.

Chip Hybridization
For each cell line, ribosomal RNA was depleted from 1 mg of total

RNA with the RiboMinus Human/Mouse Transcriptome Isolation

kit (Invitrogen). cDNA was generated with the GeneChip WT

cDNA Synthesis and Amplification Kit (Affymetrix) per manufac-

turer’s instructions. cDNA was fragmented and end labeled with

the GeneChip WT Terminal Labeling Kit (Affymetrix). Approxi-

mately 5.5 mg of labeled DNA target was hybridized to the Affyme-

trix GeneChip Human Exon 1.0 ST Array at 45�C for 16 hr per

manufacturer’s recommendation. Hybridized arrays were washed

and stained on a GeneChip Fluidics Station 450 and scanned on

a GCS3000 Scanner (Affymetrix). Previous studies using princi-

pal-component analysis (PCA) clustering on five technical repli-

cates for each RNA sample, taken from three different passages

from two cell lines, indicated that technical replicates group
632 The American Journal of Human Genetics 82, 631–640, March
together very tightly.19 We did not perform replicates; however,

data for technical replicates from the Affymetrix website indicates

an average Pearson correlation coefficient of greater than 0.995

and a coefficient of variation of 7.2%.20

Data Filtering for SNPs in Probes, Signal

Normalization, and Summarization
Expression arrays were analyzed with Partek GS Exon Array soft-

ware (Partek, St. Louis, MO). The start and end coordinates of all

probes represented on the exon array were queried and deter-

mined against the human genome (hg17). The coordinates for

all SNPs were then queried in the dbSNP database (release 126)

and used to identify probes harboring SNPs. In total, >400,000

probes within 255,676 unique probesets (of the ~1.4 million pro-

besets on the exon array) contained SNPs within their structures.

Among these affected probesets, 105,000 harbored two or more

probes with SNPs. These 105,000 probesets and their correspond-

ing probes were then filtered from all samples. After filtering,

individual probe intensities were background corrected, by sub-

traction of the median intensity of a population of nongenomic

probes with the same GC content, to account for any nonspecific

hybridization. The resulting probe signal intensities were quantile

normalized over all 176 samples. Probeset-level expression signals

were summarized with the robust multi-array average (RMA)

method21. A constant of 16 was added to all probeset intensities

for variance stabilization, and summarized signals were then

log2 transformed with a median polish. We generated the expres-

sion signals of the 17,879 transcript clusters (gene-level) with the

core set (i.e., with RefSeq-supported annotation) of exons used

(~200,000) by taking averages of all annotated probesets (exon-

level) for each transcript cluster. We considered a transcript cluster

to be reliably expressed in LCLs if the log2-transformed expression

signal was > 6 in at least 90% of the 176 samples. 9156 transcript

clusters met these criteria and were further analyzed.

Identifying Differentially Expressed Genes

with the Westfall-Young Approach
We used the free step-down approach of Westfall-Young (W-Y

approach),22 which is commonly known as a permutation-based

family-wise error rate (FWER) correction approach, to identify dif-

ferentially expressed transcript clusters between the CEU and YRI

samples. The W-Y approach takes the dependence structure

between genes into account, which is especially relevant when

one is interested in genes that are involved in the same biological

process or pathway. The basic test used is the standard pooled-var-

iance t statistic. Because gene expression from individuals within

the same trio may be correlated, trios were permuted between

the CEU and YRI samples. The W-Y approach (10,000 permuta-

tions) was then used to compute simultaneous p values that con-

trol the overall error rate or FWER. This is equivalent to assuming

that the trios are independent and that membership is defined at

the trio-level. The transcript clusters with a significant permuta-

tion-adjusted p value (Pc < 0.01) were chosen for further analyses.

The permutation-adjusted one-sided p values were calculated with

the Permax 2.2 software, which was provided as a contributory

library by Robert Gray in the R statistical package.23

Identifying Differentially Expressed Genes

with a General Linear Model
We also used a general linear model constructed to reflect the trio

relationships in our data to identify differentially expressed
2008



transcript clusters between the CEU and YRI samples. Trios were

treated as units of analysis, and members of different families

were considered independent. The covariance structure within

a trio was modeled via a Toeplitz structure with two diagonal

bands, with the trios ordered by father, offspring, then mother.

With this covariance structure, mother and father gene-expression

levels are independent but the offspring’s value is allowed to

covary with both the father’s and the mother’s values. In order

to reduce the number of false-positive results, a Bonferroni correc-

tion (Pc < 0.05) was used. Differential genes with this stringent

cutoff were used in further analysis. In addition to the Bonferroni

correction, the less-conservative QVALUE24 (default settings, Pc <

0.01) was used to provide an estimate of the lower-bound propor-

tion of true nulls (p0) for comparison. All models were pro-

grammed with the PROC MIXED procedure in SAS/STAT software

version 9.1 (SAS Institute). The REPEATED statement was used to

model the Toeplitz covariance structure.

Chromosomal Distribution of Differential Genes
Distribution of the transcript clusters differentially expressed be-

tween the CEU and YRI samples were tested against the null chro-

mosomal distribution of the analysis set of 9156 core transcript

clusters. Significant chromosomes were determined with binomial

tests (Pc < 0.05 after Bonferroni correction). The chromosomal dis-

tribution of the differentially expressed transcript clusters was

plotted with STRIPE.25

Cluster Analysis
For the genes that were found to differ in expression between the

CEU and YRI samples, the Pearson correlation coefficients of the

expression levels were computed for the 176 samples to represent

pairwise similarity. The samples were then grouped by a hierarchi-

cal clustering algorithm26 using the average linkage method,

which was implemented in the MeV:MultiExperiment Viewer

(TIGR).

GO and KEGG Pathway Analyses
We used Onto-Express27–29 to identify enriched Gene Ontology

(GO)30 biological processes among the differentially expressed

genes. Only well-characterized genes (excluding hypothetical pro-

teins) were included in the analysis. GO terms that were overrep-

resented relative to the analysis set of 9156 core transcript clusters

(corresponding to 8498 well-characterized genes) were selected

(three or more hits, binomial test Pc < 0.05 after Benjamini-Hoch-

berg [BH] correction31). Similarly, enriched Kyoto Encyclopedia of

Genes and Genomes (KEGG)32 pathways among the differentially

expressed genes relative to the analysis set were identified by Path-

way-Express27–29 (three hits or more, binomial test Pc < 0.05 after

BH correction).

Fst Values
Fst, a metric representation of the effect of population subdivision,

was estimated according to Wright’s approximate formula,

Fst ¼ ðHT �HSÞ=HT , where HT represents expected heterozygosity

per locus of the total population and HS represents expected het-

erozygosity of a subpopulation.33 An Fst value was calculated for

each SNP of interest with allele frequencies estimated from the

unrelated individuals in each population.
The
Genotype Data for the HapMap Samples
SNP genotypes were downloaded from the International HapMap

Project database (released July 21, 2006). SNPs with any Mende-

lian allele-transmission errors on 22 autosomes in the CEU or

YRI samples were discarded to reduce the effect of possible geno-

typing errors. The final genotype dataset comprised 2,098,437

and 2,286,186 common SNPs (minor-allele frequency > 5%) in

the CEU and YRI samples, respectively.

Identifying Local or Distant Genetic Variants

that Regulate Gene Expression
The expression quantitative-trait loci (eQTLs) studies were ana-

lyzed with the QTDT software,34,35 which integrated SNPs and

the differentially expressed transcript clusters between the CEU

and YRI samples. The association study was carried out with

gene expression in the CEU or YRI samples with gender as a cova-

riate (QTDT p< 2.3 3 10�8, Pc < 0.05 after Bonferroni correction).

We defined a gene as locally associated if the gene expression was

associated with any SNP within 2.5 Mb on the same chromosome,

whereas a gene was defined as distantly associated if the gene

expression was associated with any SNP on different chromo-

somes or more than 2.5 Mb away on the same chromosome.

Evaluation of Genetic Variation and Nongenetic

Factors Contributing to Population Differences

in Expression
For a subset of moderate eQTLs (QTDT p < 0.001, including all

local and distant high-frequency SNPs having at least two counts

for each genotype), a reduced QTDT model was tested with gender

as a covariate. Likelihood-ratio tests comparing the QTDT, with

both population identity and gender as covariates, to the reduced

QTDT were computed to test whether population identity re-

mained a significant predictor of gene expression when the associ-

ation between genotype and expression was modeled.

Results

Identifying Differentially Expressed

Genes between Populations

Of the 9156 transcript clusters, 410 (4.5%) showed signifi-

cantly different expression between the CEU and YRI

samples by the t test-based W-Y approach (permutation-

adjusted Pc < 0.01). Among these 410 transcript clusters,

156 had higher expression levels in the CEU samples and

254 had higher expression levels in the YRI samples. Of

the 9156 transcript clusters, 464 (5.1%), including 156

with higher expression in CEU samples and 308 with

higher expression in YRI samples, were found to be differ-

entially expressed by the general linear model with a Toe-

plitz form for modeling parents-offspring trios (Pc < 0.05

after Bonferroni correction). With both of these indepen-

dent statistical approaches used, 383 transcript clusters

(4.2%) showed significantly different expression between

the CEU and YRI samples (Table S1, available online). We

found that 3136 genes (34%) were differential between

the two populations at false discovery rate (FDR ¼ 1%)

by using the QVALUE software24 (Table S2). However, the

1% cutoff is somewhat arbitrary. By examining the entire
American Journal of Human Genetics 82, 631–640, March 2008 633



set of p values, Storey et al. have shown that an estimate of

the overall proportion of differentially expressed genes can

be obtained without the requirement to set a subjective

threshold.24 When doing this, we found that 67% of the

genes were differentially expressed between the two popu-

lations (p0 ¼ 0.33 with default settings of the QVALUE24

software). Possible explanations for the discrepancy be-

tween our estimate, obtained with QVALUE, and the pro-

portion of differential genes reported by Storey et al.17

(17%) could be the much larger sample size used in our

study and/or other nongenetic factors, which we tried to

evaluate by testing a residual model.

Chromosomal Distribution of Differential Genes

Figure 1 shows the chromosomal distribution of these 383

transcript clusters. Although four chromosomes had nomi-

nally significant p values (p<0.05), at Pc<0.05 after Bonfer-

roni correction chromosomes were not overrepresented or

Figure 1. Chromosomal Distribution of Differentially
Expressed Genes
The chromosomal distribution of the 383 transcript clusters
differentially expressed between the CEU and YRI samples.
247 transcript clusters (blue) showed higher levels of expres-
sion in the YRI samples, whereas 136 transcript clusters (red)
showed higher levels of expression in the CEU samples.

Figure 2. Clustering of Differentially Expressed Genes
Hierarchical clustering of the 383 differentially expressed transcript clusters (rows) and the 176 HapMap samples (columns). Red indi-
cates higher expression and green indicates lower expression. The top panel is the two-way hierarchical clustering of the 383 transcript
clusters and the 176 samples. The bottom panel is the tree view of the grouped samples. One of the two major distinguished groups
consists of 71 CEU samples and 3 YRI samples, and the other group consists of 86 YRI samples and 16 CEU samples.

underrepresented relative to the null distribution of the

transcript clusters in the analysis set.

Cluster Analysis

Figure 2 shows the results of the cluster analysis on the

383 differential transcript clusters between the CEU

and YRI samples. The cluster analysis grouped the 176

samples into two major distinguishable groups, in which

the CEU samples were generally separated from the YRI

samples with only a few exceptions. The cluster analysis

results confirmed that the population identity was a deter-

ministic variable for the differences in expression for these

genes.

GO and KEGG Pathway Analyses

With the analysis set as background, two GO biological

processes were found to be enriched in the 383 transcript

clusters (corresponding to 388 well-characterized genes):

ribosome biogenesis (p ¼ 3.6 3 10�3, Pc < 0.05 after BH

correction) and antimicrobial humoral response (sensu

Vertebrata) (p ¼ 2.7 3 10�3, Pc < 0.05 after BH correction)

(Table 1). In contrast, at Pc < 0.05 no enriched KEGG path-

ways were identified in the differential genes.
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Identifying Local or Distant Genetic Variants

that Associate with Gene Expression

Association with >2,000,000 HapMap9,10 SNPs was eval-

uated in the CEU and YRI samples with the QTDT

software.34,35 In CEU and YRI, we identified six and five

transcript clusters, respectively, whose expression was

shown to be correlated with local SNPs (p < 2.3 3 10�8,

Pc< 0.05 after Bonferroni correction, Table S3). In addition,

we identified 18 transcript clusters in CEU and 46 in YRI

whose expression was shown to be correlated with distant

SNPs (p< 2.3 3 10�8, Pc< 0.05 after Bonferroni correction,

Table S3). Among all of these, two transcript clusters in CEU

and three transcript clusters in YRI were shown to be associ-

ated with both local and distant SNPs. Some representative

SNPs are shown in Table 2. Among the transcript clusters

associated with local SNPs, three transcript clusters

(LOC646836, HIST1H3B [MIM*602819], SPATA20) (Fig-

ure 3) were found in both CEU and YRI samples.

Discussion

The Affymetrix GeneChip Human Exon 1.0 ST Array was

utilized to measure gene expression levels in EBV-trans-

formed LCLs derived from 176 healthy individuals (CEU:

87 cell lines; YRI: 89 cell lines).10 Gene-level expressions

were computed by the summarization of signals from

well-annotated exons (core set) within each transcript clus-

ter. To identify differentially expressed genes between the

CEU and YRI samples, we compared the expression levels

of 9156 transcript clusters that appeared to be reliably ex-

pressed. The proportion of expressed genes we defined is

comparable to previous observations in LCLs.7 Using two

Table 1. Enriched Gene-Ontology Biological Processes in the
Gene Differentially Expressed between the CEU and YRI
Samples

GO ID

Biological

Process Gene Symbol Pa Pc
b

GO:7046 ribosome

biogenesis

BMS1L; GTPBP4;

UTP14C;

UTP14A

0.00036 0.04

GO:19735 antimicrobial

humoral

response

(sensu

Vertebrata)

SH2B2; CXCR3;

CCR7; MGST3;

CD53; MASP2

0.0011 0.042

GO:8033 tRNA

processing

PUS3; QTRT1;

TRMU; TRUB1;

WDR4

0.002 0.07

GO:184 mRNA

catabolism,

nonsense-

mediated

decay

UPT2; GSPT1;

UPF3A

0.0042 0.076

GO:16337 cell-cell

adhesion

NPHP4; ICAM5;

CD44

0.0081 0.01

a Nominal p values.
b Adjusted p values after BH correction.
The A
independent statistical approaches, we identified 383 tran-

script clusters whose expression was significantly dif-

ferent between the CEU and YRI samples. A majority of

the differential transcript clusters identified with the two

approaches (93% for the W-Y approach and 83% for the

linear model) were consistent. The W-Yapproach considers

dependence between genes when testing expression,

whereas the general linear model approach accounts for

the dependence between parents and offspring within

each trio. The average absolute difference in mean expres-

sion levels was 1.26-fold, consistent with the previous data

that the differences in gene expression level between pop-

ulations, albeit significant, are not dramatic.17 Among

these 383 transcript clusters, nine genes (DPYSL2 [MIM

*602463], CTTN [MIM *164765], PLCG1 [MIM *172420],

SS18 [MIM *600192], SH2B3 [MIM *605093], CPNE9,

CMAH [MIM *603209], CXCR3 [MIM *300574], and

MRPS7) were reported by Storey et al. in their top 50 differ-

ential gene list17 from 16 CEU and YRI samples.

One potential problem with the use of expression micro-

arrays is that oligonucleotide hybridization could be af-

fected by polymorphisms located within probes.36 It has

been shown that sequence polymorphisms can result in

many false positives when testing for cis eQTLs.37 The

same effect was also observed in our exon-array expression

data. For example, we detected a differential level of gene

expression of HLA-DPB1 [MIM*142858] between the CEU

and YRI samples by using the unfiltered expression data.

Further examination indicated that the genotype of SNP

rs1042448 located in one of the probes at the 30-UTR in

HLA-DPB1 had a dramatic effect upon the overall expres-

sion of the gene. The ‘‘A’’ allele, which associated with

lower HLA-DPB1 expression, has lower allele frequency

in the CEU samples (Fst ¼ 0.16) (Figure S1). However, pre-

vious studies did not consider this potentially confound-

ing effect on the evaluation of gene expression.17 Thus,

to prevent confounding interpretations of gene expression

variation, we conservatively removed probesets that con-

tained two or more probes harboring SNPs before summa-

rizing expression.

One potential cause for the observed gene-expression

differences between populations could be the influence

of copy-number variation (CNV). We queried the Database

for Genomic Variants,38,39 which contains the CNV data

on the HapMap samples. We did not observe a higher per-

centage of CNVs among the 383 transcript clusters (12.5%,

Table S1) as compared to the entire analysis set (12.7%). In

other words, a majority of the differential transcript clus-

ters we identified were not within genomic regions of

known CNVs. Therefore, it is unlikely that CNV is a major

contributor to the expression differences we observed,

though the detailed contribution of CNVs to the differen-

tial expression at an individual level is not clear.

To further explore the biological functions of these dif-

ferentially expressed genes, we searched the GO30 and

KEGG32 databases for enriched biological processes or

known pathways in the genes that are differentially
merican Journal of Human Genetics 82, 631–640, March 2008 635



Table 2. Local and Distant eQTL Regions Associated with Differential Expression between the CEU and YRI Samples

Affymetrix

Transcript-Cluster ID Symbol

eQTL

Chromosome

eQTLRegion

Starta
eQTL

Region Enda Mode

Number of

SNPs in eQTL Regionb

2336585 LOC653511; SCP2 1 53058601 53210718 CEU_local 23

2576554 LOC646836 2 131946053 131983007 CEU_local 12

2946215 HIST1H3B 6 25891888 26235250 CEU_local 50

3243262 HSD17B7P2;

LOC728924

10 37887922 38830434 CEU_local 50

3726569 SPATA20 17 45980827 45991533 CEU_local 4

3757602 LGP2 17 37510689 37547551 CEU_local 21

2576554 LOC646836 2 131942868 132009907 YRI_local 10

2676009 TWF2 3 52239947 52268899 YRI_local 5

2927722 HEBP2 6 138734108 138771357 YRI_local 19

2946215 HIST1H3B 6 25990621 26232222 YRI_local 4

3726569 SPATA20 17 45968836 45991533 YRI_local 7

2405893 C1orf212 17 63001411 63003236 CEU_distant 2

2576554 LOC646836 6 4013334 4014132 CEU_distant 2

3404436 CLEC2D 3 114568124 114583501 CEU_distant 2

3404436 CLEC2D 3 170414733 170425874 CEU_distant 3

3704495 APRT 3 56842045 56857103 CEU_distant 5

3726569 SPATA20 5 57560034 57578585 CEU_distant 8

4011989 CXCR3 1 61141307 61148816 CEU_distant 3

2342576 ACADM 2 156219672 156230250 YRI_distant 2

2676009 TWF2 2 182593683 182634395 YRI_distant 5

2757347 TMEM129 21 16516008 16517542 YRI_distant 3

2830861 EGR1 13 20552246 20552534 YRI_distant 2

2830861 EGR1 15 47728289 47738173 YRI_distant 5

2946215 HIST1H3B 5 37591074 37592683 YRI_distant 3

3119945 GRINA 16 79004853 79025950 YRI_distant 4

3138414 ARMC1 2 22100308 22182977 YRI_distant 2

3150844 SNTB1 6 55926914 55960696 YRI_distant 9

3430552 PWP1 17 64946645 64949581 YRI_distant 2

3528115 KIAA0737 3 83259569 83287824 YRI_distant 3

3528115 KIAA0737 13 74765674 74769331 YRI_distant 2

3528115 KIAA0737 16 69926323 69944391 YRI_distant 3

3528115 KIAA0737 17 45912325 45921701 YRI_distant 3

3528115 KIAA0737 21 21433634 21439258 YRI_distant 2

3597977 TRIP4 12 100519345 100522642 YRI_distant 3

3726569 SPATA20 10 51182135 51185540 YRI_distant 2

3755862 IKZF3 8 53290604 53290675 YRI_distant 2

3755862 IKZF3 10 106900641 106901321 YRI_distant 2

3774635 FASN 1 94702933 94744451 YRI_distant 2

3840058 PPP2R1A 4 139332786 139333979 YRI_distant 2

3850278 TYK2 9 23187975 23209634 YRI_distant 3

a indicates that SNP position information was from dbSNP version 126.
b indicates that these eQTL regions contain at least two SNPs with internal distance less than 200 Kb; other eQTLs are shown in Table S3.
expressed between these two populations. Two GO bio-

logical processes, ribosome biogenesis and antimicrobial

humoral response (sensu Vertebrata), were found to be en-

riched in our gene set (Table 1). It has been reported that

African Americans may be more susceptible to infection

by certain bacteria than are individuals of European ances-

try.40 Also, some genetic polymorphisms carried in the

African-American population have been shown to lead to

different antimicrobial response.41 Therefore, our findings

that differentially expressed genes are enriched in antimi-

crobial humoral response could be used to evaluate these

clinical observations. Using 16 samples, Storey et al. found

that their differentially expressed genes were strongly en-

riched in inflammatory pathways17 and included two cyto-

kine receptors (CCR7 [MIM*600242] and CXCR3), which
636 The American Journal of Human Genetics 82, 631–640, March
also showed up in our list. In addition, at a less-stringent

cutoff (Pc < 0.10 after BH correction), three more GO bio-

logical processes were found to be enriched: cell-cell adhe-

sion, mRNA catabolism (nonsense-mediated decay), and

tRNA processing (Table 1). Interestingly, several of these

systems might further modulate overall gene expression,

making populations more similar or different. The fact

that such biological processes as ribosomal biogenesis

and tRNA processing are enriched in the differentially ex-

pressed genes suggests their possible roles in contribution

to the population differences at a level higher than that

of mRNA expression. Strikingly, a defect within a gene

linked to a tRNA has been reported to contribute to a broad

range of cell malfunctions that may lead to heart disease

and stroke.42 At Pc < 0.05, a search for enriched KEGG
2008



pathways within our gene set did not identify any known

pathways. When a more lenient cutoff of Pc < 0.20 after

BH correction was used, one pathway, the Notch-signaling

pathway (p ¼ 0.004), was found to be enriched in the dif-

ferential genes. The Notch-signaling pathway has a wide-

spread role in development and has been associated with

several human diseases, including many types of cancer.43

This pathway was also found by Storey et al. to be enriched

in the top 10% of differential genes between CEU and YRI,

but only when a nominally significant p value with no

multiple test correction was used.17

We then evaluated the genetic contributions to the

observed differences in expression between the CEU and

YRI samples. We carried out a genome-wide eQTL analysis

to identify the local and distant genetic variants that regu-

late the 383 transcript clusters’ expression using the pub-

licly available SNP markers from the International HapMap

Project.9,10 Gene expression associated with any SNP

Figure 3. Gene Expression Regulated
by Local eQTLs
Three differentially expressed genes are
regulated by the same local eQTLs in CEU
(red) and YRI (blue) populations.
(A) and (B) show that the higher expres-
sion of LOC646836 in CEU is regulated by
SNP rs7424438 (Fst ¼ 0.21).
(C) and (D) show that the higher expres-
sion of HIST1H3B in CEU is regulated by
SNP rs198820 (Fst ¼ 0.16).
(E) and (F) show that the higher expression
of SPATA20 in CEU is regulated by
rs8076470 (Fst ¼ 0.22).
The numbers below the boxplots in (B),
(D), and (F) are the genotype counts of
the SNPs.

within 2.5 Mb on the same chromo-

some was defined as locally associ-

ated, and gene expression associated

with any SNP on a different chromo-

some or more than 2.5 Mb away on

the same chromosome was defined

as distantly associated. The Bonfer-

roni correction provided us with

a list of SNPs whose associations

with differential expression were

the most striking. Among the tran-

script clusters associated with local

SNPs, three (LOC646836, HIST1H3B,

SPATA20) were found in both CEU

and YRI samples (Figure 3, Table 2).

The allele-frequency-driven gene-

expression difference between the

CEU and YRI samples is further illus-

trated in Figure 3, which shows the

relationship between some represen-

tative SNPs for the three locally asso-

ciated transcript clusters and gene expression in both

populations.

Because of the differences in cell-line collection time be-

tween the CEU and YRI samples,10,18 expression differences

could be a combined effect of both genetic and nongenetic

factors. In addition, culture conditions or batch-to-batch

variation could influence the observed differences in gene

expression between the two populations.16 Therefore, to

reduce these variables, cell culture protocols were optimized

and samples (CEU and YRI) were randomized when cul-

tured and hybridized. We further testedwhether population

identity (which would include any effects due to collection-

time differences) remained a significant predictor of gene

expression when the association between genotype and

expression was modeled. For a subset of moderate eQTLs

(including all local SNPs and distant high-frequency SNPs

having at least two counts for each genotype), with a less

stringent cutoff than the previous QTDT test (p < 0.001),

The American Journal of Human Genetics 82, 631–640, March 2008 637



360 differential transcript clusters were shown to be regu-

lated by local and/ordistant SNPs (Figure 4) with population

identity no longer a significant predictor. In other words,

a majority of the differential transcript clusters (94%) are

not explained simply by population identity alone. While

our results confirmed that common genetic variants ac-

count for a substantial fraction of the observed differences

in gene expression, some nongenetic factors could still

contribute to the observed population differences in gene

expression in these samples. Previous studies have focused

on cis-acting elements,17 but our results suggest that distant

or trans-acting elements can also contribute substantially to

the population differences in gene expression. Thus, it is

possible that various cis- and trans-acting elements interact

as part of a complete network of regulation of complex

traits. Our findings of significant SNP and transcript cluster

associations, therefore, can be targets for further functional

validation to investigate these regulation mechanisms.

Impressively, both the two previous studies (Spielman

et al. and Storey et al.) and the current study utilized the

HapMap LCL samples and reported the contribution of

common variants to the differential expression between

populations. However, there were differences in study

design (e.g., sample size, number of genes on chips, micro-

array technology,44 consideration of SNPs in probes, and

different statistical approaches) that would account for

the discrepancy in these studies. Although the reproduc-

ibility of the exon arrays is generally high,19,20 one limita-

tion of this work is that technical replicates were not

available for these samples, thus limiting our discussion

to only sets of genes that are differentially expressed

between populations. For a more comprehensive view of

gene expression, one would need to consider interindivid-

ual and interpopulation variation together.

Figure 4. Evaluation of the Contribution of Nongenetic
Factors to Gene-Expression Variation
A majority of the differential transcript clusters are not ex-
plained simply by population identity alone. Each point repre-
sents an association of an SNP with an expression phenotype.
The y axis is the p value of the likelihood test (see Methods).
The vertical line represents the Fst value cutoff (Fst ¼ 0.15).
The horizontal line represents the p value cutoff (p ¼ 0.001).
(A) Red points indicate 19 transcript clusters whose expression
levels are driven by allele frequency of local SNPs.
(B) Red points indicate 341 transcript clusters whose expres-
sion levels are driven by allele frequency of distant SNPs.

Supplemental Data

Supplemental data include one figure and three tables and can

be found with this article online at http://www.ajhg.org/.
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The URLs for data presented herein are as follows:

Affymetrix Exon Array manufactor’s recommendation, http://

www.affymetrix.com/products/arrays/exon_application.affx

Coriell Institute of Medical Research, http://locus.umdnj.edu/

nigms/

Database for Genomic Variants, http://projects.tcag.ca/variation

dbSNP database, http://www.ncbi.nlm.nih.gov/projects/SNP/

Gene Expression Omnibus (GEO), http://www.ncbi.nlm.nih.gov/

geo/

GO database, http://www.geneontology.org/

HapMap project, http://www.hapmap.org

KEGG database, http://www.genome.jp/kegg/

MultiExperiment Viewer, http://www.tm4.org/mev.html

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim/

Onto-Express, http://vortex.cs.wayne.edu/ontoexpress

Permax, http://biowww.dfci.harvard.edu/~gray/permax.html

Pharmacogenics and Pharmacogenics Knowledge Base, http://

www.pharmgkb.org
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Accession Numbers

The accession number for the gene-expression data deposited in

Gene Expression Omnibus is GSE7851. The accession number

for the phenotype data deposited into the Pharmacogenetics

and Pharmacogenomics Knowledge Base is PS206983.
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